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Multiple Scattering in Random Media.1 III. Coherent 
Potential Propagators and Fluctuations 
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An earlier microscopic approach to the theory of the averaged resolvent opera- 
tor for an electron interacting with impurities is formulated in terms of coherent 
propagators. We study the corrections to the coherent potential approximation 
arising from fluctuations. For uncorrelated positions of the impurities, the linear, 
restricted, and general two-body additive approximations to the treatments of 
fluctuations are studied. For general correlations, the linear and restricted 
two-body additive approximations are studied. For both coherent and bare 
propagators, corresponding treatments of fluctuations involve the same correla- 
tion functions for impurities. 

KEY WORDS: Coherent potential; fluctuations; multiple scattering. 

1. INTRODUCTION 

In I and II we presented (1) a "microscopic" approach to the theory of the 
propagation of electron waves in a system of randomly placed scatterers. 
Specifically, we were concerned with the determination of the average of 
the resolvent operator G(E) for a prescribed probability distribution for the 
scatterers. The theory used the multiple-scattering formation and was 
developed with the bare-electron resolvent operators. The basic microscopic 
equations involve the site-dependent amplitudes 

(IIA~]2) = (llT~12)expIi(1 - 2)R~I 

This quantity is split into a mean value and a fluctuation. The fluctuation 
equations can be subjected to exact manipulations that exhibit collective 
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contributions. Study of a linear approximation for the fluctuations yielded 
corrections to the quasicrystalline approximation. (2) The corrections in- 
volve the triplet as well as the pair static correlation functions. We also 
introduced the restricted and general two-body additive approximations for 
the functional dependence of the A~ on the scatterer positions. These, and 
more general microscopic assumptions, lead to truncations for a modified 
hierarchy of correlation functions for the scattering amplitudes. 

In the present paper we rework these ideas, using a coherent potential 
resolvent,operator in place of the bare-electron resolvent. The new resol- 
vent is defined in terms of the exact self-energy operator E (k lE  ) as the 
diagonal operator, 

The adaptation to the coherent potential propagator follows the prescrip- 
tions of Faulkner, (3) Gyorffy, (4) and Korringa and Mills. (5) Different 
developments of the coherent potential idea are given by Schwartz and 
Ehrenreich (6) and by Roth. (7) Our concern is to go beyond the coherent 
potential approximation (C.P.A.) to include fluctuation effects. It turns out 
to be easy to take over the results of I and II, and there is a one-to-one 
correspondence between the formulas for coherent and bare propagators. 
In particular, the treatment of fluctuations to the same accuracy (i.e., 
microscopic functional form) involves the same static correlation functions. 
We show that linear fluctuation theory gives no change in the coherent 
potential result for the uncorrelated case. This shows explicitly that the 
self-consistent C.P.A. incorporates some fluctuation effects of a theory 
based on bare propagators, and that it has a certain "stability." There are, 
however, changes for the system with general correlations, even when 
fluctuations are treated in the linear approximation or restricted two-body 
approximation (2BA). For the uncorrelated case, these changes appear in 
the general 2BA and higher accuracy approximations. 

The use of exact propagators is physically appealing and is the general 
procedure in quantum field theory and many-body theory. In the present 
problem it was first introduced by Klauder (8) in a study of the uncorrelated 
case. To have convincing results one needs a systematic and controlled 
treatment of fluctuations. Since we use the multiple scattering formalism, 
the fluctuation analysis is directly in terms of the t matrix for single-atom 
scattering, rather than in terms of the potential. The way that the coherent 
potential is treated here is close in spirit to the general theory of the 
complex wave number and energy-dependent optical potential as devel- 
oped in nuclear physics by Watson (9) and by Feshbach. (l~ Here, the 
site-averaged scattering matrix is calculated with modified atomic- 
scattering matrices, with exact propagators, and with a suitable treatment 
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of fluctuations. Then it is set equal to zero to determine the optical or 
coherent potential self-consistently. 

. INTRODUCTION OF THE COHERENT POTENTIAL 

We adapt the results in I and II to the coherent potential propagator. 
The starting point is 

G = G o + G o VG 

= G O + Go TG o 

T = V +  VGoT , V =  E,~v,~ 

G o = ( E -  Ho) - l ,  G = ( E -  H )  - t  

We introduce a potential E(2[ E )  and use a propagator 

G,(2) = [ E  - Y~(21 E)  - H 0 ] - '  

The exact G also obeys 

G = G I + G I ( V -  ~,)G = G I + GITIGI  

We introduced the multiple-scattering description 

T~ = t~(1 + GoEt~v~T ~ ), T = Z~T,. 

t~ = v~(1 + Got.) 

We now introduce 

T 1 = t2(1 + G , Z ~ . ~ T J  ), 

In order to have 

T~ = ( V -  Z)  + ( V -  Z ) G , T  ' 

(1) 

(2) 

we take t~ to satisfy 

(3) 

(4) 

(5) 

T 1 = Y,~ T2 (6) 

(7) 

E Z 1 

In fact, keeping track of 1 I N  effects, the matrix amplitudes that satisfy 

Y )Gl t  I (9> 

can be replaced for the off-diagonal elements by 

t I = v + vGlt l  (10) 

i.e., 

(1]tl[2) -- (1]t'12) for 1 4:2 (11) 
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But for the diagonal elements we have 

E(1) 
( l l t ' l l )  + T = ( l l t ' l l )  (12) 

Thus there is a discontinuity in (11t112} as 2---> 1. This is necessary since the 
total scattering in the strictly forward direction is different from that at any 
finite angle. 

The object of introducing the Y. is to describe the coherent wave. After 
suitable approximations to treat fluctuations, and after averaging over site 
variables, we set 

( l l T l t l )  = 0  (13) 

as a condition to fix Z. Hence 

G,(1) = a,(1) = a0(1 ) + a00)T(1)a0(1 ) (14) 

In sum, the conditions (12) and (13) determine E and (l[ t l l l}.  The relation 
between t I and t is 

t I = t + t ( a  1 - G0)t 1 (15) 

If we wish, we can eliminate t I in favor of t. For the delta function 
potential, t is the same for all matrix elements, diagonal as well as 
off-diagonal. The same thing is true for t I and 

t (16) 
t, = 1 + t[  o 0 ( 3 )  - o , ( 3 ) ]  

This relation involves Z, which is independent of the wave vector for the 
delta function case. 

The basic equation for ( l lTl l2} is now set up in terms of (llt~12}. For 
the off-diagonal elements 

(IIAl[2) = (l[t '12)[1 + GI (2)E~(2IA~I2}  ] 

+ ( l l t ' G , i 3 } A ( 3 1 2 ) Y ,  e T _ = E = r  ) (17) 

The equation for the diagonal elements has the same form with 1 ~ 2. 
Of course, we have to treat the diagonal t ~ terms carefully. 

The formulation is now on the same footing as the earlier theory based 
on the free-electron propagator G o . Even for the delta function potential, 
there are now two scattering amplitudes, viz., t~ for the off-diagonal ele- 
ments and (21t112} = t 1 - E(2) /N for the diagonal elements. We fix atten- 
tion on an initial wave vector 2, which will be a parameter throughout the 
discussion. 

Let/s be a matrix in particle space 

(1 (Kol),~ 3) = N ( I I t l G I I 3 } A ( 3 1 2 ) E ~ ( 2  - 3) (18) 
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Let A 1 be the vector A~ and let q~ be the vector q,. = 1. Then 

(1 (K'l)~/~ 3} = ( l [ t l G l [ 3 ) f f 2 ( 2  - 3)A(3[2 ) (1 -  8~,/~) 

= (1]J~o113)(1 - 8~,/~ ) (19) 

is the same for every pair a, fl when a 4=/3. This definition of J~d differs 
from that of K o in I and II in that we now have a factor A(312). We will 
separate the terms involving G1(2) explicitly. 

Our new starting point is 

( 1[All2 ) = ( lltll2 )4' + ~(  1 It]all2 ) (2lq'" A112 ) 

+~(l ~~ + (l ~,12) (20, 
This holds for the diagonal element as well, i.e., 1 ~ 2. Note that the wave 
vector 2 does not appear in the sums over wave vectors that arise in matrix 
multiplications. 

The first step is to find exact expressions for the mean values in terms 
of fluctuations. The fluctuation contribution to the mean value (lIX~]2) is 

Y ~ ( 1  (Sk~)~---------!~ 3 ) (318A~,2 )  

We will see that we can write 

(318A~12) = ( 31r~l 4) (4JAil2) 
(21) 

(31F~12) =0  
Using F ~ to describe the fluctuations, we define a fluctuation kernel 

= (1/N2)(II,/,rRd--~r p )  A(3 12)(1 - ~,e  ) 

--= (11/7FI3}(1 -- ~=,a) (22) 

This relies on the fact that (KF)~B is again independent of the pair a,/3. 
The equation for the mean value ~T~ ~ X l is 

( l [A ' [2)  = ( l i t ' [2 ) [1  + NGI(2)(2IA-'[2 ) ] + ( I [KIA' I2)  (23) 

where 

J ~ ' =  R~ + KF (24) 

The term containing R l only involves the off-diagonal (31Xt12). A 
separate equation should be written for 1 = 2. 
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The coherent potential approach is to define the potential by the 
condition that the diagonal element (21A-112)= 0. This yields the off- 
diagonal element 

(II~Tll2) = (1 ( 1 -  K' l ) - ' t '  2), 14=2 (25) 

The equation for the diagonal element yields the result 

(21t112) = - ( 2  K l ( 1 -  ~ " ) - ' t  1 2) (26) 

We thus have the exact formal result for the optical potential 

Y.(2) = N(2lt,[2 ) + ( 2 / ~ ' ( 1 -  R " ) - ' t  ! 2) (27) 

In the second term we can put t I ~ tl, since the properties of R ensure that 
the diagonal (2[t112) does not occur. Finally we have the more compact 
form 

21(2) = N(2  ( 1 -  K ) - l t l  2) (28) 

The standard coherent potential approximation involves the complete 
neglect of the fluctuation kernel K F. For the case of a delta function 
potential we have the explicit result: 

(IlK'dI3) = x,(2) (29) 

x1(2 ) = t l G 1 ( 3 ) f f 2 ( 2  - 3)A(312) (30) 

N t  1 
21(2)- l - x , ( 2 )  (31) 

In terms of the strength v of the delta potential 

Y(2) --- N v  (32) 
1 - VGl(4 ) - vG1(3)F2(2 - 3)A( 3_[ 2) 

3. EQUATION DESCRIBING FLUCTUATIONS 

To include the effects of fluctuations, we note that the off-diagonal 
fluctuation obeys the equation 

(118A~12)-~ 1 -~-~bSA 2 = 1 - - -~ -q~Tt2  +q~(lltlGd2)(2[q~SAII2 ) 

"t'-~(1 ~R~ / (33) 
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The terms on the left-hand side involve the off-diagonal fluctuations. On 
the right-hand side we only require the collective part of the diagonal 
fluctuation. We have 

16K~ --x 
( 1 -  N(2It'G,12 ) }(21~'8A'[2)= (2 ---~-A 2 ) +  (2[/~o1~" 8A'[2) 

+ 3 ( 2  d ? ~ S A  1 2) (34) 

As in I and II, we eliminate the diagonal part of the fluctuations. We 
do this in a slightly different way so as to have a form with an explicit 
separation of the wave vector 2. 

Define 
" 1  N(ll(PoLBI3 ) -- (I[(K~)~r 3) + d&(lltlG~']2)(2 (d?. Kd) B 3) (35) 

G,(2) 
G~(2) = (36) 1-  N(2ItlGI[2) 

On eliminating the diagonal part of the fluctuations, we obtain 

(118A'12) - , ( l t f f o , .  8A'12 ) = (118/;oq,A'12) + 8(118/;o8A'12 ) (37) 

The collective part of the off-diagonal fluctuation obeys 

+8(l(1-NPo)-l*Sfio'SA12) (38) 

( 1 [P213 ) = 5:.EB~ ~ ( 1 ](Po)~13) (39) 

Eliminating this as well, and setting 

we have 

(llSA~I2) = (llr~l 3__)(31Xl12) (40) 

(llF~13) = (118Mo,~]3) + 8 ( l[~oFll  3) (41) 

1 (li(8Mo)o~i3) = ~ ( 1 (SKo ~)o~ 3 ) 

--1 A "~1 
qJ~ (1 ( 1 -  NFo)Po(q~ 'SKd)p3)  (42) +N 



248 

with 

1 (11~o~13) + (llt,G~12)(2l~dl3) (llffo13) = 

(IlFoL2) =0 
For the delta function potential, using the fact that 

O~(2) = G(z )  E 1 - NtlOo(2)]-I  

1 ( 1](3Mo),~#13 ) = ~ (1 (3KJ )~  3) 

G (1 yff2) (4,.8Xo%3) l-y,(2) 

y,(2) = Nt,Go(2 ) + x1(2 ) 

Gross 

(43) 

(44) 

(45) 

(46) 

4. THE UNCORRELATED CASE 

Here the averages Ko 1 and Po are zero, and 334 o =  34 o. We are 
interested in computing 

1 (lltlGl12 - ~)A(~_I0)(2 _ _~[0~(h)[3) (47) ( l l fFI3)  = 

(l[ U~(x)I3 ) = 4, N(X)(llr'13) (48) 

4.1. Linear Fluctuation Theory and the Restricted 2BA 

In the linear fluctuation theory we simply approximate F t by the 
source term: Since, following II, we can check that the contribution of the 
collective part vanishes as N ~ oo, 

(11I'113) = (1/N)(11/s (49) 

Then we have 

(lJUg(~)I3) = N28(NI2 - 3)(llt~G,[3) (50) 

We see that only (31 U~(2 - 3)[3), i.e., (3 I r '  [3) contributes to K" F. As a 
result we have a single diagonal element factor (3 [ tl ]3): 

(IIKFt3) = N(llt113)(31?I3)G~(3 ) (51) 
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Let us first examine the results for a delta function potential. Then we 
have 

z(3) } c?(3) (IlKFI3) = Nt ,  t , -  

E = Nt l  

(52) 

propagator gave 
X = Nt l  

1 - N t Z G ~ ( 3 )  (53) 

With the coherent potential 

E =  

But 

N t  
1 + t[ Go(_X ) - Gl(?t) l  

G0(x)  - G , ( x )  = - C0(X)G, (X)E  (55)  

and in lowest order this tends to 

- NtGo(X)Go(X ) (56) 

In the restricted 2BA, we have the ansatz 

(l[F'[3) = (1[H'13)/~(2 - 3)0 (57) 

with 

(l lUl(X)[3) = N28(X12 - 3 ) ( l l n l [ 3 )  (58) 

(l In 113) is determined by forming an equation for Ug(2 - 3) by multiply- 
ing the I "1 equation by E~(2 - 3) and averaging. This leads to 

( I IH ' [3 )  = (lltlG~'[3) (59) 

With coherent propagators G~ is practically equal to G~ since the denomi- 
nator differs from unity by only a term of order t 4. For the bare propagator 
G~ differed from G O by a term of order t. 

(54) 

1 - t l G ~ ( 3 ) [ N t  , - E]  

The case 1 = 3 contributes an effect that vanishes as N ~  ~ .  Of course 
Z(2) is independent of 2. This result is interesting since the solution for Z 
that tends to zero as t~--->0 is exactly E = N t  v Thus, with the coherent 
potential propagator the linearized fluctuations contribute nothing. The 
linear fluctuation effects that appeared in the theory based on the bare 
propagator are included in the self-consistent potential. This is also true for 
the general scattering matrix (l[t[2). 

For the delta function, the linear fluctuation theory based on the bare 
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4.2. Iterations and the General 2BA 

A single iteration, again noting that collective contributions vanish, 
yields 

l ~l 1 ^ (IlF I 3) = (liKd4,13) + 8(11k024,13) (60) 
A 2 1(64 , contains 3BA terms. However, they do not contribute to k F for the 

uncorrelated system. Thus 3BA terms do not affect the accuracy of Z 
through terms of order t 4. We find 

(3}U2~( 2 -  3)13 ) -- N2(31t~Gl[3)(1 + N ( 3 l t l G , I 3 ) )  
(61) 

(410~(2 - 4)13 ) = U(4[ t lGt l2  + 4 -  3) (2  + 4 -  3[t1G,[3)A(413 ) 

The fluctuation kernel is 

(IIJ~F[3) = (lltIGll3)N (31U~(2-  3)13) 

( l l t lGll4)  ( 4 1 ~ ( 2  - 4)i3)A(413 ) (62) 
+ N 

The first term is contained in the restricted 2BA. The second term is 
new and contains no diagonal t 1 elements. For a delta function potential 

(IIKF]3) = qG2(3)( 1 + G1(3)[ Nt  I - Y,(3)] ) (Nt  I - ~.(3)) 

+ N t ~ G I ( 4 ) G 1 ( 4 -  2 + 3)G~(3)A(413) (63) 

To order tl 4 (we can neglect the first term in K F which is of order t~), 

Z(2) = Nt][1 - Nt3GI(4)GI(4_ - 2 + 3)G~(3)] -1 (64) 

This provides a correction to the coherent potential approximation. 
We now turn to the general 2BA. The ansatz is 

(11r (2)13)-- (11H (2)13) (2 - 3)4, 
+ ( l [H l (2  - _?,)]3)/~(X)4,&(~_ ] 2 - 3) (65) 

We can repeat the analysis of II, changing G O to G 1 and t to t ~. In the 
general 2BA, the three-body correlation function U3 l is zero for the un- 
correlated case. A special role is played by U}(2 - 3). In the N---> c~ limit 
we have 

(IIG~(2 - 3 ) [ 3 ) =  N2(llt~G~13 ) (66) 

In 1 = 3 we encounter (3[tll 3) = (3It I - Y,(3)/N[3). 
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In 2t v a 2 - 3 we have the analog of II, Eq. (29): 

(l 0d(x)[3)- NKltt'G,I2- X)(2-  X[Ug(X)[3) 

- (  l l t~Gll2-  X -  X__,) (2 - ) t -  _X,[ U21(_~,)[3 ) 

= N2( lltlG,13 - h)  (3 - ;~lt'G~'13) (67) 

This is a nontrivial integral equation. If it is treated by iteration we 
find a result for the fluctuation kernel in lowest order that is similar to Eq. 
(63). Several of the G 1 propagators are replaced by Gt. The first iteration of 
(67) involves the integral U20k l )  t e r m .  Since the leading term in U21(X) is 
already of order t 2 this is of order t~ and leads to a tl 5 correction to the 
self-energy. 

A more detailed analysis is possible for separable potentials. For the 
delta function potential we use the function S ](XlX 0, which is the solution 
of 

S'()t I X,) { 1 - [  NI,  - Z(2 - X)]G,(2 - X)} 

Ltl  
( a l ( 2  - )~ - )k2)S  l(~t 2 I Xl) d~k 2 = ~(~t - ~tl) (68) 

2~r 
Then 

( l[ U2~(X)13) = N h 2 f s ' ( X I X l ) G , ( 3  - X,)dX~ Gi'(3) 

= Nt I -~ fal(~)ar(~,)[ N t  I - '~ ( )k) ]  d~k 

+u,;( 5 ):f f f <(2-x)s'(Xlx,) 

(69) 

x G(x2 - x,)at(x2) dX dX, d~2 (70) 

The first term is of order t~ and will be dropped (although it is easy to 
compute it to lowest order). 

Through terms of order (Ntl) 3 we can replace S ](~tl~l) by Wl()~l)tl), 
which is the solution of 

LI 1 
f G , ( 2  - X - X2) W'(X21X,) dX2= 3(X - X,) (71) w'(xlx,) - 

This leads to an improved result in the low-density case. The Fourier 
transform solution is 

w ' ( x l x , )  = ~ e,(~,-~)x + ~ G(x)e 

(72) 
B - l ( x )  = 1 - -[  L t l  " ?2 Gl(x)j [ 
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This leads to 

Nt31 2 I Ltl " KF(2; 3_) = -~--~-(-~-~-) yG3(x) eiZx+ -~-~G,(x)]B(x)dx 
J 

where 

(73) 

f [ x~ 1-' dl (X lE)=Go(x lE-Y~)= dXe ,x~ E - Z - - - f f  +ie (74) 

Here we have neglected contributions to KF(2;3) that involve (31t113) 
through propagators G~. These contribute t 7 corrections. 

It is a straightforward matter to carry the theory a stage further, so as 
to include effects of the three-point correlation functions U3, along the lines 
detailed in II. 

5. GENERAL CORRELATIONS 

We will only make a detailed analysis for the linear fluctuation theory 
and for the restricted 2BA (including collective effects). The theory then 
involves at most triplet static correlation functions. The general 2BA 
involves four-point static functions. 

In the linear fluctuation theory 

(llr'13) = (ll~Moq,13) (75) 

with 8Mo given by Eq. (42). For simplicity we work with the delta function 
case. We have 

(i[ U](?~)13 ) = ( I I?GII3)E  x 8E 2 (X)SE 2 (2 - 3) 

-N(lltlGll3)ffz(?~)ffz( 2 - 3)Yl/(1 - Y 0  (76) 

In particular, as N ~ oo 

( 3 1 0 2 ( 2 -  3)13)=  N2(3[tlGl]3)[1 + f f2(2-  3)] (77) 

The fluctuation kernel may be written as a sum of three terms: 

~F = RF, + g~2 + K; 
(llgF'13) = NqG2(3)(3Itll3)[1 + F2(2- 3)]A(312) (78) 

(llgF213_) = Nt~GI(2 - ~)G1(3){ff3(X]2 - 3) - ff2(_h + 3 - 2) 

- p~(x)f~(2 - 3)} 
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The collective part is 

(IlK~I 3_) = - x~(2)yl(2)/[ 1 - y l (2) ]  (79) 

and 

Z(2) = Nt,/[1 - x,(2) - ~v(2 I 3_)] (80) 

In the coherent potential approximation 

(31t'13) = t~ - Z ( 3 ) / N  = - tlx,(3)/[1 - x,(3)]  (81) 

and is of order t~. If this approximation is used to estimate K" F, we find 

x1(3_)  2(2 3)] (82) ( I IK 'FI3)  = -t~G~(3-)l --~1(3_)[1 + - 

This contributes to order t 4 in the self energy. The collective part  of the 
kernel also contributes terms of order t 4, but  of a different type since it 
involves y 1 x ~. 

The coherent potential approximation no longer accounts for all of the 
terms of order t~ in the optical Y,. The missing terms, arising in the linear 
fluctuations theory, are given by KF. Since if3 and ff20t)F2(2-  3) are 
proportional to the square of the density, at low density 

(I[K'F[3) ---> -- t2Gl(~)Gl(3)ff2(~+ 3) (83) 

This term is independent  of the wave vector 2. 
We next study the treatment of fluctuations with the restricted 2BA 

and its obvious extensions. If one neglects collective terms, the ansatz is 

(1117113) = ( I IH~I3)6E~ - 3) (84) 

Then 

(31uJ(2-3) I3)=N2(31Hl13){ l+f f2(2-3) )  as N---> ~ (85) 

For ~ :# 2 - 3 

( 2 -  xl ug(A)[3 ) = N 2 ( 2 -  XIH'[3 ) 

• {ff3()~ [ 2 - 3) - ff2(X + 3 - 2) - ff2()t)ff2(2 - 3)} 

(86) 

The determination of H 1 follows the lines of I, but we must  be careful 
to handle the diagonal elements of t I properly. 

Let 

( IIt1G~IA)P2(3 - X)A(X [ 1)A(~. 13) 
( l [x l (2 ;  3)t)t) = 1 + F 2 ( 2 -  3) (87) 
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This matrix has no diagonal elements and also ~ 4= 3, with 2 and 3 playing 
the role of parameters. Then we find 

(31H'13) = (31ci3)/[1 - N(3 IC i3 ) ]  (88) 
with 

(31C'3)=(31t lGl '3)+(  3x .  1 1 ~pl t l G l 3 )  (89) 

We also have 

( l l n a l 3 )  --- (1 1 qGl 3 / / [ 1 -  N (3tCI3) ] (90) 

If this is applied to the delta function case we have, after some algebra, 

[ '32 l (IlHII 3) -- t?*/ E -  Nt?* - -~- , 1 4=3 (91) 

(31Hll3) = [ t~'* - TY~(3) ] / [ E -  Nt~* - --fk~] (92) 

Here 
t~* = t l / [ 1  - 0(2 ;  3)] (93) 

tlGl(~_)ff2(3 -- _~)~X(~_ [ 3) 
0(2;  3) = (94) 

1 + ff2(2 - 3)  

The fluctuation kernel is 

(I]~'F~ + a(F=]3 ) = NtlG1(3)(aIH113)(1 + f f2(2-  3)) 

+ NtlG1(2 - ~_)A(_~ 12 - 3)(2 - ~ tH  '13) 

• { ff30~ ] 2 - 3) - ff2()~ + 3 - 2) - ff2(~)ff2(2 - 3)} 

(95) 

Of course, we must add the contribution of the collective part to the 
fluctuation kernel, viz., - x~yl(1 - Yl)- 1. 

There are some obvious generalizations of the restricted 2BA. For 
example, the ansatz (75) can be generalized to 

(11F113) -- (11113)(118M0,/,13) (96) 

and the amplitude (11I 13) determined by forming the moment  

( 118~t0'/'l • ) (• 
as applied to equation (41). This leads to higher-order collective contribu- 
tions. However, this is best left to be done in a systematic theory, based on 
an analysis of the underlying function space. 
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